\(\int \frac {\sec (a+b x) \sin (3 a+3 b x)}{(c+d x)^3} \, dx\) [388]

   Optimal result
   Rubi [N/A]
   Mathematica [N/A]
   Maple [N/A] (verified)
   Fricas [N/A]
   Sympy [F(-1)]
   Maxima [N/A]
   Giac [N/A]
   Mupad [N/A]

Optimal result

Integrand size = 23, antiderivative size = 23 \[ \int \frac {\sec (a+b x) \sin (3 a+3 b x)}{(c+d x)^3} \, dx=-\frac {2 b \cos (2 a+2 b x)}{d^2 (c+d x)}-\frac {4 b^2 \operatorname {CosIntegral}\left (\frac {2 b c}{d}+2 b x\right ) \sin \left (2 a-\frac {2 b c}{d}\right )}{d^3}-\frac {\sin (2 a+2 b x)}{d (c+d x)^2}-\frac {4 b^2 \cos \left (2 a-\frac {2 b c}{d}\right ) \text {Si}\left (\frac {2 b c}{d}+2 b x\right )}{d^3}-\text {Int}\left (\frac {\tan (a+b x)}{(c+d x)^3},x\right ) \]

[Out]

-2*b*cos(2*b*x+2*a)/d^2/(d*x+c)-4*b^2*cos(2*a-2*b*c/d)*Si(2*b*c/d+2*b*x)/d^3-4*b^2*Ci(2*b*c/d+2*b*x)*sin(2*a-2
*b*c/d)/d^3-sin(2*b*x+2*a)/d/(d*x+c)^2-Unintegrable(tan(b*x+a)/(d*x+c)^3,x)

Rubi [N/A]

Not integrable

Time = 0.49 (sec) , antiderivative size = 23, normalized size of antiderivative = 1.00, number of steps used = 0, number of rules used = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \[ \int \frac {\sec (a+b x) \sin (3 a+3 b x)}{(c+d x)^3} \, dx=\int \frac {\sec (a+b x) \sin (3 a+3 b x)}{(c+d x)^3} \, dx \]

[In]

Int[(Sec[a + b*x]*Sin[3*a + 3*b*x])/(c + d*x)^3,x]

[Out]

(-2*b*Cos[2*a + 2*b*x])/(d^2*(c + d*x)) - (4*b^2*CosIntegral[(2*b*c)/d + 2*b*x]*Sin[2*a - (2*b*c)/d])/d^3 - Si
n[2*a + 2*b*x]/(d*(c + d*x)^2) - (4*b^2*Cos[2*a - (2*b*c)/d]*SinIntegral[(2*b*c)/d + 2*b*x])/d^3 - Defer[Int][
Tan[a + b*x]/(c + d*x)^3, x]

Rubi steps \begin{align*} \text {integral}& = \int \left (\frac {3 \cos (a+b x) \sin (a+b x)}{(c+d x)^3}-\frac {\sin ^2(a+b x) \tan (a+b x)}{(c+d x)^3}\right ) \, dx \\ & = 3 \int \frac {\cos (a+b x) \sin (a+b x)}{(c+d x)^3} \, dx-\int \frac {\sin ^2(a+b x) \tan (a+b x)}{(c+d x)^3} \, dx \\ & = 3 \int \frac {\sin (2 a+2 b x)}{2 (c+d x)^3} \, dx+\int \frac {\cos (a+b x) \sin (a+b x)}{(c+d x)^3} \, dx-\int \frac {\tan (a+b x)}{(c+d x)^3} \, dx \\ & = \frac {3}{2} \int \frac {\sin (2 a+2 b x)}{(c+d x)^3} \, dx+\int \frac {\sin (2 a+2 b x)}{2 (c+d x)^3} \, dx-\int \frac {\tan (a+b x)}{(c+d x)^3} \, dx \\ & = -\frac {3 \sin (2 a+2 b x)}{4 d (c+d x)^2}+\frac {1}{2} \int \frac {\sin (2 a+2 b x)}{(c+d x)^3} \, dx+\frac {(3 b) \int \frac {\cos (2 a+2 b x)}{(c+d x)^2} \, dx}{2 d}-\int \frac {\tan (a+b x)}{(c+d x)^3} \, dx \\ & = -\frac {3 b \cos (2 a+2 b x)}{2 d^2 (c+d x)}-\frac {\sin (2 a+2 b x)}{d (c+d x)^2}-\frac {\left (3 b^2\right ) \int \frac {\sin (2 a+2 b x)}{c+d x} \, dx}{d^2}+\frac {b \int \frac {\cos (2 a+2 b x)}{(c+d x)^2} \, dx}{2 d}-\int \frac {\tan (a+b x)}{(c+d x)^3} \, dx \\ & = -\frac {2 b \cos (2 a+2 b x)}{d^2 (c+d x)}-\frac {\sin (2 a+2 b x)}{d (c+d x)^2}-\frac {b^2 \int \frac {\sin (2 a+2 b x)}{c+d x} \, dx}{d^2}-\frac {\left (3 b^2 \cos \left (2 a-\frac {2 b c}{d}\right )\right ) \int \frac {\sin \left (\frac {2 b c}{d}+2 b x\right )}{c+d x} \, dx}{d^2}-\frac {\left (3 b^2 \sin \left (2 a-\frac {2 b c}{d}\right )\right ) \int \frac {\cos \left (\frac {2 b c}{d}+2 b x\right )}{c+d x} \, dx}{d^2}-\int \frac {\tan (a+b x)}{(c+d x)^3} \, dx \\ & = -\frac {2 b \cos (2 a+2 b x)}{d^2 (c+d x)}-\frac {3 b^2 \operatorname {CosIntegral}\left (\frac {2 b c}{d}+2 b x\right ) \sin \left (2 a-\frac {2 b c}{d}\right )}{d^3}-\frac {\sin (2 a+2 b x)}{d (c+d x)^2}-\frac {3 b^2 \cos \left (2 a-\frac {2 b c}{d}\right ) \text {Si}\left (\frac {2 b c}{d}+2 b x\right )}{d^3}-\frac {\left (b^2 \cos \left (2 a-\frac {2 b c}{d}\right )\right ) \int \frac {\sin \left (\frac {2 b c}{d}+2 b x\right )}{c+d x} \, dx}{d^2}-\frac {\left (b^2 \sin \left (2 a-\frac {2 b c}{d}\right )\right ) \int \frac {\cos \left (\frac {2 b c}{d}+2 b x\right )}{c+d x} \, dx}{d^2}-\int \frac {\tan (a+b x)}{(c+d x)^3} \, dx \\ & = -\frac {2 b \cos (2 a+2 b x)}{d^2 (c+d x)}-\frac {4 b^2 \operatorname {CosIntegral}\left (\frac {2 b c}{d}+2 b x\right ) \sin \left (2 a-\frac {2 b c}{d}\right )}{d^3}-\frac {\sin (2 a+2 b x)}{d (c+d x)^2}-\frac {4 b^2 \cos \left (2 a-\frac {2 b c}{d}\right ) \text {Si}\left (\frac {2 b c}{d}+2 b x\right )}{d^3}-\int \frac {\tan (a+b x)}{(c+d x)^3} \, dx \\ \end{align*}

Mathematica [N/A]

Not integrable

Time = 4.68 (sec) , antiderivative size = 25, normalized size of antiderivative = 1.09 \[ \int \frac {\sec (a+b x) \sin (3 a+3 b x)}{(c+d x)^3} \, dx=\int \frac {\sec (a+b x) \sin (3 a+3 b x)}{(c+d x)^3} \, dx \]

[In]

Integrate[(Sec[a + b*x]*Sin[3*a + 3*b*x])/(c + d*x)^3,x]

[Out]

Integrate[(Sec[a + b*x]*Sin[3*a + 3*b*x])/(c + d*x)^3, x]

Maple [N/A] (verified)

Not integrable

Time = 0.50 (sec) , antiderivative size = 23, normalized size of antiderivative = 1.00

\[\int \frac {\sec \left (x b +a \right ) \sin \left (3 x b +3 a \right )}{\left (d x +c \right )^{3}}d x\]

[In]

int(sec(b*x+a)*sin(3*b*x+3*a)/(d*x+c)^3,x)

[Out]

int(sec(b*x+a)*sin(3*b*x+3*a)/(d*x+c)^3,x)

Fricas [N/A]

Not integrable

Time = 0.26 (sec) , antiderivative size = 47, normalized size of antiderivative = 2.04 \[ \int \frac {\sec (a+b x) \sin (3 a+3 b x)}{(c+d x)^3} \, dx=\int { \frac {\sec \left (b x + a\right ) \sin \left (3 \, b x + 3 \, a\right )}{{\left (d x + c\right )}^{3}} \,d x } \]

[In]

integrate(sec(b*x+a)*sin(3*b*x+3*a)/(d*x+c)^3,x, algorithm="fricas")

[Out]

integral(sec(b*x + a)*sin(3*b*x + 3*a)/(d^3*x^3 + 3*c*d^2*x^2 + 3*c^2*d*x + c^3), x)

Sympy [F(-1)]

Timed out. \[ \int \frac {\sec (a+b x) \sin (3 a+3 b x)}{(c+d x)^3} \, dx=\text {Timed out} \]

[In]

integrate(sec(b*x+a)*sin(3*b*x+3*a)/(d*x+c)**3,x)

[Out]

Timed out

Maxima [N/A]

Not integrable

Time = 0.43 (sec) , antiderivative size = 308, normalized size of antiderivative = 13.39 \[ \int \frac {\sec (a+b x) \sin (3 a+3 b x)}{(c+d x)^3} \, dx=\int { \frac {\sec \left (b x + a\right ) \sin \left (3 \, b x + 3 \, a\right )}{{\left (d x + c\right )}^{3}} \,d x } \]

[In]

integrate(sec(b*x+a)*sin(3*b*x+3*a)/(d*x+c)^3,x, algorithm="maxima")

[Out]

-((-I*exp_integral_e(3, 2*(-I*b*d*x - I*b*c)/d) + I*exp_integral_e(3, -2*(-I*b*d*x - I*b*c)/d))*cos(-2*(b*c -
a*d)/d) + 2*(d^3*x^2 + 2*c*d^2*x + c^2*d)*integrate(sin(2*b*x + 2*a)/(d^3*x^3 + 3*c*d^2*x^2 + 3*c^2*d*x + c^3
+ (d^3*x^3 + 3*c*d^2*x^2 + 3*c^2*d*x + c^3)*cos(2*b*x + 2*a)^2 + (d^3*x^3 + 3*c*d^2*x^2 + 3*c^2*d*x + c^3)*sin
(2*b*x + 2*a)^2 + 2*(d^3*x^3 + 3*c*d^2*x^2 + 3*c^2*d*x + c^3)*cos(2*b*x + 2*a)), x) + (exp_integral_e(3, 2*(-I
*b*d*x - I*b*c)/d) + exp_integral_e(3, -2*(-I*b*d*x - I*b*c)/d))*sin(-2*(b*c - a*d)/d))/(d^3*x^2 + 2*c*d^2*x +
 c^2*d)

Giac [N/A]

Not integrable

Time = 0.40 (sec) , antiderivative size = 25, normalized size of antiderivative = 1.09 \[ \int \frac {\sec (a+b x) \sin (3 a+3 b x)}{(c+d x)^3} \, dx=\int { \frac {\sec \left (b x + a\right ) \sin \left (3 \, b x + 3 \, a\right )}{{\left (d x + c\right )}^{3}} \,d x } \]

[In]

integrate(sec(b*x+a)*sin(3*b*x+3*a)/(d*x+c)^3,x, algorithm="giac")

[Out]

integrate(sec(b*x + a)*sin(3*b*x + 3*a)/(d*x + c)^3, x)

Mupad [N/A]

Not integrable

Time = 30.45 (sec) , antiderivative size = 27, normalized size of antiderivative = 1.17 \[ \int \frac {\sec (a+b x) \sin (3 a+3 b x)}{(c+d x)^3} \, dx=\int \frac {\sin \left (3\,a+3\,b\,x\right )}{\cos \left (a+b\,x\right )\,{\left (c+d\,x\right )}^3} \,d x \]

[In]

int(sin(3*a + 3*b*x)/(cos(a + b*x)*(c + d*x)^3),x)

[Out]

int(sin(3*a + 3*b*x)/(cos(a + b*x)*(c + d*x)^3), x)